Skip to content

UArizona astrobiology researchers awarded $12 million grant by NASA

NASA awarded approximately $12 million to UArizona astrobiology researchers to establish two major new research teams tasked with advancing our fundamental understanding of early Earth biology and biogeochemistry, and with exploring which nearby planets outside our solar system may be suitable for hosting life.

The NASA Astrobiology Program has selected eight new interdisciplinary research teams to inaugurate its Interdisciplinary Consortia for Astrobiology Research program, including two teams at the University of Arizona. Led by Betül Kaçar and Dániel Apai, the teams were selected from a pool of more than 40 proposals. The breadth and depth of the research of these teams spans the spectrum of astrobiology research, from cosmic origins to planetary system formation, origins and evolution of life, and the search for life beyond Earth.

“Being part of this inaugural effort will position the University of Arizona in a leading role at the forefront of the most pressing and challenging questions in astrobiology,” said University of Arizona President Robert C. Robbins. “It is an incredible honor to have two teams from the university selected for this important work and I look forward to following their progress in this groundbreaking research.”

Astrobiology is a discipline devoted to the study of the origins, evolution and distribution of life in the universe, the declared goal of NASA’s Astrobiology Program. The program is central to NASA’s continued exploration of the solar system and beyond, and supports research into the origin and early evolution of life, the potential of life to adapt to different environments, and the implications for life elsewhere.

“What are the essential attributes of life, and how should they shape our notions of habitability and the search for life on other worlds?” Kaçar said. Motivated by this broad question, her project team will explore the natural selection of the chemical elements during the coevolution of life and environment on Earth.

Kaçar’s team will approach this puzzle by studying life on early Earth. This will involve geochemical and biological investigations that involve ancient materials, experiments and modern natural systems, such as tracking down microbes in extreme environments and remote locations, as well as studying ancient variants of proteins and microbial metabolisms in the lab.

VISIT HERE to read the article in its entirety.

 

 


Visit www.aztechcouncil.org/tech-events to view all of the Council’s upcoming virtual networking opportunities, engaging virtual tech events and in-person tech events.


 

 

Sign up for our Newsletter!