

Wednesday, Janu	ary 19	
12:30-1:00pm	Registration	
Opening Session		
1:00 – 1:30pm	Welcome and Opening Remarks by John Dennis, Optics Valley Chair with special guests Carol Stewart, Associate Vice President, Tech Parks Arizona and Karla Morales, Vice-President, Southern Arizona Regional Office, Arizona Technology Council	
Quantum Information Fleming, Center for Qu Arizona	Science Session chaired by Stephen antum Networks, University of	
1:30 - 2:00pm	Keynote: The Quantum Internet — Why Should We Care?	
	Presenter: Saikat Guha, PhD, Director and Principal Investigator, Center for Quantum Networks (CQN) and Professor of Optical Sciences, University of Arizona	
2:00 - 2:30pm	Decoding of Quantum Low- Density Parity Check (QLDPC) Codes	
	Author and Presenter: Bane Vasić, PhD, Professor of Electrical and Computer Engineering and Mathematics at the University of Arizona and a director of the Error Correction Laboratory	
	Authors: Bane Vasić, Nithin Raveendran and Narayanan Rengaswamy	
	Abstract: Quantum error correction (QEC) codes are vital for protecting fragile qubits from decoherence. It has been widely recognized that they are indispensable for practical realizations of quantum computers, secure communications systems and	

2022 PROGRAM Conference Co-Chairs:

Robert Walker, Leonardo Electronics US and Jack Schumann, Optics Valley

> networks. Designing good QEC codes together with lowcomplexity, high-performance decoders is an important theoretical and engineering challenge facing scalable practical realizations of these systems. Decoders for QEC codes need to be powerful enough to correct the quantum errors, but also have low complexity and low latency to fight against the qubit decoherence. Achieving high qubit reliability with stringent latency constraints is extremely challenging, and is not possible by existing solutions. This talk introduces an advanced QEC scheme based on quantum lowdensity parity-check (QLDPC) codes. QLDPC codes are attractive because they support lowcomplexity iterative decoding algorithms such as Belief Propagation, however, iterative decoders are impacted by detrimental graphical configurations known as trapping sets present in a code graph as well as symmetric degeneracy of errors. These configurations significantly degrade the decoder decoding probability performance, and cause so-called error floor. We show that the knowledge of trapping set can be used to design better QLDPC codes and decoders. Decoding probability improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing.

2:30 - 3:00pm

Company Pitches: Finetech, Optilab

3:00 - 3:30pm	Networking & Coffee Break hosted by Control Vision
3:30 - 4:00pm	Advances in Photonic Quantum Information Processing
	Presenter: Matt Eichenfield, Distinguished Member of Technical Staff and Group Leader for MEMS-Enabled Quantum Photonics, Sandia National Laboratories
4:00 - 4:30pm	Entanglement Routing in a Quantum Network and its Applications
	Authors and Presenters: Emily Van Milligen, PhD student, CQN, College of Optical Sciences, University of Arizona and Ashlesha Patil, PhD student, CQN, College of Optical Sciences, University of Arizona
	Abstract: Shared entanglement generation is a key resource for a multitude of applications such as Quantum Communications and Secret Key Generation. In this talk, we first discuss the building blocks of quantum networks and give some protocols to generate and route entanglement in the network. We show the benefits of multi-path routing when a quantum network is only equipped to make Bell State measurements, although the rate of entanglement spread still decays exponentially with distance. One way around this is to allow for GHZ measurements, which can result in a distance independent rate given certain network conditions. Time Multiplexing is another tool we introduce that can further improve these protocols, although its effectiveness is determined by average rate of decoherence in

	the network. We finish the talk by discussing how to apply all these tools to distributive sensing in order to more precisely measure some given scene parameter. Lastly, we mention some future directions for our work.
4:30 - 5:00pm	Company Pitches: Quantum Technology
Welcome Reception h	osted by Edmund Optics
5:00 - 6:30pm	Welcome Reception
Thursday, Januar	y 20
7:30-8:00am	Registration & Coffee hosted by Control Vision
Opening Session	
8:00 - 8:30am	Welcome and Opening Remarks by Robert Walker, Vice President, Sales and Marketing, Leonardo Electronics US with special guests Thomas Koch, PhD, Dean of the Wyant College of Optical Sciences and Eric Miller, Principal, PADT and Chairman of the Board, Arizona Technology Council
Biomedical Technolog Dotherow, DrPH, Mel a Public Health, Universi	y Session chaired by Edward and Enid Zuckerman College of ty of Arizona
8:30 - 9:00am	Keynote: Advanced Photonics for Miniature Endoscopes
	Author and Presenter: Jennifer Kehlet Barton, PhD, Director BIO5 Institute, University of Arizona
	Abstract: Recent years have brought a revolution in miniature, high performance optics and photonics. Combined with new materials and advanced manufacturing techniques, it is now possible to create sub-mm to few-mm endoscopes that can gain new insight into the health of the human body in a minimally- invasive manner. I will discuss

Conference Co-Chairs: Robert Walker, Leonardo Electronics US and Jack Schumann, Optics Valley

> work performed in my lab and others, to create small standalone or babyscopes incorporating reflectance, fluorescence, optical coherence tomography, and multiphoton microscopy imaging, including images of fallopian tube in vivo.

Unique Cloud-based Medical Laser Platform for Phototherapy and Treatment Monitoring Glioblastoma

Author and Presenter: Jari Ovaskainen, Business Development Director, Modulight Corp.

Abstract: Personalized medicine is one of the main directions in the current cancer care. Patients can be pre-screened for different treatments based on a genetic profiling and the treatments can be adjusted to each patient accordingly. In photoimmunotherapy the treatment monitoring can be done optically in real-time and adjusting the treatment based on the retrieved data for each patient. To answer this need, Modulight has implemented a minimally invasive real-time optical treatment monitoring unit into medical laser platform ML7710. It has been designed to illuminate and retrieve spectral data from the tumor tissue simultaneously from up to eight different locations. The device can be tailored for several different multi-wavelength illumination and measurement configurations. Any number of the eight channels can measure the spectra from tissue and/or drug simultaneously while all other channels are delivering treatment illumination.

9:00 - 9:30am

2022 PROGRAM Conference Co-Chairs:

Robert Walker, Leonardo Electronics US and Jack Schumann, Optics Valley

	Alternatively, one or more channels can be used at a time to produce spatial data about treatment progress. The laser with this optical monitoring feature is currently being tested in glioblastoma trials in Germany where patients receive photoimmunotherapy and treatment is tailored through spectral monitoring of the drug photobleaching. The medical laser is cloud-connected, and all diagnostic data is downloaded real-time into the analytics server. This enables machine learning and Al-based data analytics to process recorded data, which aims to help clinicians to make more informed treatment decisions and deliver the best treatment outcome to patients in future.
9:30 - 9:45am	CREOL Presentation by David Hagan, PhD, Dean and Director of the College of Optics and Photonics, University of Florida
9:45 – 10:00am	Company Pitches: Lightel
10:00 - 10:30am	Networking & Coffee Break hosted by Control Vision
10:30 - 11:00am	Author and Presenter: Curtis Thorne, PhD, Assistant Professor, BIO5 Institute and Assistant Professor, Cellular and Molecular Medicine, University of Arizona
11:00 - 11:30am	Imaging Through Hair-Thin Optical Fibers Using Nanostructured Metasurfaces
	Author and Presenter: George S. D. Gordon, PhD, Associate Professor and UKRI Future Leaders Fellow, Faculty of Engineering University of Nottingham
11:30 - 12:00am	Company Pitches: Company Pitches: Park Innovaare, AEMtec

12:00 - 12:30pm	Industry Organization Presentations by APOMA, GPA, Optica and SPIE
12:30 - 1:30pm	Lunch & Networking hosted by Tech Launch Arizona
Laser Technology Session Business Development,	on chaired by Lukas Gruber, PhD, Leonardo Electronics US
1:30 - 2:00pm	Keynote: Multi-Joule Diode- Pumped Tm: YLF Laser
	Author and Presenter: Issa Tamer, PhD, Advanced Photon Technologies, NIF and Photon Science, Lawrence Livermore National Laboratory
	Authors: Issa Tamer, Brendan A. Reagan, Thomas Galvin, Justin Galbraith, Emily Sistrunk, Andrew Church, Glenn Huete, Hansel Neurath, Drew Willard, and Thomas Spinka
	Abstract: We present the first demonstration of a multi-joule diode-pumped Tm:YLF laser. The compact demonstrator setup, consisting of a Tm:YLF-based oscillator producing ~20mJ, 20ns pulses at 1880nm wavelength that seeds a diode-pumped four-pass Tm:YLF power amplifier, generated pulse energies up to 3.9J with a maximum net gain exceeding 200. No saturation effects were observed within this amplifier, as the output pulse energies increased exponentially with the input pump power. When the amplifier was seeded with the free-running oscillator, with pulse durations still significantly shorter than the 15ms radiative lifetime of Tm:YLF, energies of up to 38J were achieved. To the best of our knowledge, this represents over a 100-fold improvement in the

	highest reported pulse energy from a Tm:YLF amplifier, and nearly an order of magnitude higher energy than any laser operating near 2µm. These results show that Tm:YLF, when operated in an efficient high repetition rate extraction regime and combined with a high-capacity heat removal technique, has the potential to enable a new class of efficient, high peak and average power laser systems to meet the demands of next generation scientific and industrial applications.
2:00 - 2:30pm	Single Frequency Fiber Lasers with Several Millijoules Energy and Tens Kilowatts Peak Power
	Author and Presenter: Dr. Shibin Jiang, President and CEO, AdValue Photonics Inc.
	Abstract: Pulsed single frequency fiber lasers at 1micron, 1.55micron and 2micron wavelength using AdValue Photonics' proprietary fiber technology will be presented. Pulse energy of several millijoules and peak power of tens kilowatts are successfully demonstrated, which represent the best fiber laser performance in the world to the best of our knowledge. Their applications of such pulsed single frequency fiber lasers from Lidar to glass drilling will be discussed. Innovative glass and ceramic laser machining system will be presented.
2:30 - 3:00pm	Company Pitches: Photonics Automation Specialties, Ferdinand Braun Institute

Networking & Coffee Break hosted by Control Vision

3:00 - 3:30pm

Conference Co-Chairs: Robert Walker, Leonardo Electronics US and Jack Schumann, Optics Valley

3:30 - 4:00pm **Compact High Power Fiber Laser** Systems Author and Presenter: Jenna Bergevin, Sr. Project Engineer-Fiber Systems, Leonardo Electronics US Inc. Authors: Jenna Bergevin, Bo Liu, Michael Oswald, Connor Magness, Christian Hemala, Xochitl Cooper, Mark Crowley, Clifford Headley, Prabhu Thiagarajan Abstract: The industrial usage of fiber laser systems is ubiquitous with an emerging application in defense for directed energy systems. Desired attributes in these systems include: small size and weight, high efficiency and high-power output. Results from a multi-kilowatt fiber amplifier are presented, and system tradeoffs in reaching the desired metrics are discussed. Fiber Laser Pump Modules: 4:00 - 4:30pm **Review and Outlook** Author and Presenter: Dr. Hans-Georg Treusch, Owner, GTSolution Abstract: Fiber lasers have shown the highest growth rate in power, efficiency and volume for the last two decades not only in industrial but also in all other fields of applications. Advantages in beam quality and electro-optical efficiency over competing lasers as well as the reduced complexity are building the pillars for this success. None of this would be possible without the main building

block of the pump diodes and their progress during the same time period. The presentation will review the progress of these pump diodes focusing on some

	technical aspects, how power was increased from a few to several hundred Watt and cost was driven down by volume and automation. In conclusion some scenario to reduced size at the highest power level will be discussed.
4:30 - 5:00pm	Company Pitches: Arizona Thin Films, TANDA photonics, MJS Design
Supply Chain Industry I University of Arizona V	Panel and Reception hosted by Vyant College of Optical Sciences
5:00 - 6:30pm	Supply Chain Industry Panel followed by reception. Panel moderated by Patrick Marcus, President, Marcus Engineering with panelists Victor Cruz, VP Operations, Leonardo Electronics US; Virginia Figueroa, Operations Manager, Edmund Optics – Tucson Design Center; and Brad Mora, Purchasing Manager, Ruda- Cardinal
Friday, January 21	
7:30-8:00am	Registration & Coffee hosted by Control Vision
Opening Session	
8:00 - 8:30am	Photonics Cluster Presentations moderated by Jack Schumann, Optics Valley Co-Chair with Anke Siegmeier, OptoNet; Frank Lerch, Optec BB; and John Dennis, Optics Valley
Sensing and Metrology PhD, Arizona Optical M	Session chaired by Shelby Ament, etrology
8:30 - 9:00am	Keynote: Silicon Photonics as a Mainstream Technology: Time to Get Real

Abstract: Silicon Photonics emerged within the last decade and found its first home as the foundation for high-speed networking, especially in the data centers. Recently, opportunities have blossomed across exciting new fields, and we witness SiPh enabling applications as diverse and chip-scale LIDAR for smart cars, wearable health sensors, quantum computing, and highspeed peripheral connectivity for business and consumer interconnects. All these are expected to ramp to volume production within the next five years. And that's the problem: Whereas the top SiPh suppliers of data-center transceivers have proudly achieved run rates of 2 million devices per year, these new applications are projected to see volumes two to three orders of magnitude higher. The time has come for Silicon Photonics to mature, and to address longstanding bottlenecks in production processes. Most of these bottlenecks boil down to the lengthy timescales required to achieve the precise optical alignments required by many industrial test and assembly steps. A key example is how recent advancements in intelligent micro-positioning can now reduce the cost of complex alignment process steps by a factor of 100 or more. We review these and other innovations and discuss their foundational import for production economics as Silicon Photonics enters a demanding and consequential new phase.

Conference Co-Chairs: Robert Walker, Leonardo Electronics US and Jack Schumann, Optics Valley

9:00 - 9:30am

Microfabrication and Dielectric Characterization of DLaTGS Based Pyroelectric Infrared Detectors

Author and Presenter: Motasim Alomari, PhD, Senior Scientist, Laser Components Detector Group

Abstract: A simple and costeffective industrial microfabrication process based on polishing and lapping theory has been applied experimentally on the water-soluble deuterated Lalanine-doped triglycine sulfate (DLaTGS) material. The microfabrication technique has been successfully scaled down the DLaTGS wafer to the micrometer scale without leaving undesired physical defects or cracks. Optical profilometry analysis shows that the surface roughness of selected microfilms is within one micron. The micro DLaTGS chips were used to make IR detectors after a series of processes which include mechanical and chemical treatments, metal electrode deposition and several cleaning and inspections steps. The results and analysis of DLaTGS detector at 1 kHz using dielectric and IR pyroelectric test stations show a specific detectivity (D*) between (2.61-3.44) ×108 (cmHz1/2/W) with relatively low signal-to-noise ratio (NEP) between (3.35 - 4.42) ×10-10 W/VHz. The promising measurements of the dielectric and IR detection properties of the **DLaTGS** detectors indicate promising applications in the sensing and metrology field, including, but not limited to: Fourier transform infrared (FTIR) spectrometer detectors, air quality monitoring, alcohol

	detection, anesthesiology monitoring, IR-flame detection, atmospheric and space measurements, biomedical imaging, border patrol systems, earth resource detection, engine analysis, gas analyzers, human sensors, IR detection and spectrometers, and laser detection.
9:30 – 10:00am	Company Pitches: VIAVI Solutions, Darling Geomatics, Arizona Optical Metrology
10:00 - 10:30am	Networking & Coffee Break hosted by Control Vision
10:30 - 11:00am	Manufacturing Metrology for Alternative-reality Optical Displays
	Author and Presenter: Peter de Groot, PhD, Chief Scientist, Zygo Corporation
	Abstract: One of the most exciting developments in applied optics and photonics today is innovative wearable display systems for augmented-, virtual- and mixed-reality. Successful AR VR MR devices address a variety of challenges beyond the state of the art in conventional imaging systems, driven by ergonomics, size, weight, and the essential goal of a compelling immersive experience. The challenges of Immersive displays has accelerated the development of new optical components and subsystems, including freeform optics, planar waveguides, diffractive films, volume holograms, micro displays, 3D sensors, and even metamaterials. All of these components and associated assemblies require metrology for surface form, relational measurements, surface

texture analysis, and imaging quality. This presentation describes some of the unique components of alternative-reality optical displays, and addresses ways in which interferometric metrology is playing a role in the development, optimization and ultimately, production quality control of these products.

11:00 - 11:30amInstrumentation of LaserLinewidth and Relative IntensityNoise Measurement

Author and Presenter: Emily Rodriguez, Photonics Engineer, Optilab LLC

Authors: Emily Rodriguez, Ke Huang and Leijun Yin

Abstract: Recently the rise of coherent optical communication and sensing sets the vast demand of narrow linewidth and low noise lasers. In such applications the required laser linewidth is typically below 1 MHz and can be as low as only a few Hz, below the resolution of the widely used optical spectrum analyzer (OSA). The relative intensity noise (RIN) of these lasers can also be approaching to the short noise level, making it difficult to measure. While these lasers can be characterized in a lab environment by photonics professionals using laboratory grade instruments and setup, a cost-effective measurement instrument is missing for use in mass production industrial environment by technicians with less photonics training. To address the market need, Optilab developed the laser linewidth analyzer (LLA) in a standalone 3U rackmount form for convenient

	laser linewidth measurement.
	Thanks to the broad photonics
	components portfolio that Optilab
	carries, the vertical integration of
	Optilab's existing photonics
	components based on the delayed
	self-heterodyne configuration
	enables the standalone and
	affordable instrumentation for
	laser linewidth and RIN
	measurement.
11:30 – 11:45am	Company Pitches: LLA
	Instruments/Fraunhofer IPMS
11:45- 12:00pm	Arizona Technology Council Impact and Success presented by Steven Zylstra, President and CEO, Arizona Technology Council
12:00 - 12:30pm	SBIR Opportunities presented by the Arizona Commerce Authority
12:30 - 1:30pm	Lunch & Networking hosted by Leonardo
Astronomy Session chaired by Richard Green, PhD, Steward Observatory, University of Arizona	

1:30 - 2:00pm	Aspera: The Far-ultraviolet SmallSat Mission to Unveil the Missing Universe
	Author and Presenter: Dr. Carlos J. Vargas, Aspera Mission Principal Investigator, Assistant Professor & Assistant Astronomer, University of Arizona
	Abstract: For over half a century, observational astrophysics has been eager to detect and map the most massive baryonic component of galaxies: warm-hot phase coronal gas extending into the circumgalactic medium (CGM). This phase of gas is entirely unmapped in the nearby universe. The evolution of galaxies relies heavily on the properties of gaseous halos, indicating an
	urgent need to map these

2022 PROGRAM **Conference Co-Chairs:** Robert Walker, Leonardo Electronics US

and Jack Schumann, Optics Valley

understudied regions. In the last decade, high-efficiency reflective coatings for UV optics have experienced improvements in reflectivity per bounce and overall coating stability in the far UV (FUV). Detector technology sensitive to FUV wavelengths has seen steady development of Microchannel Plate (MCP) detector technology. In parallel with these advances, SmallSat missions with serious science objectives-which did not exist a decade ago-have emerged as a promising platform for highimpact science investigations. In this talk, I present Aspera (PI C. Vargas): a FUV SmallSat mission to detect and map warm-hot phase gas emission in nearby galaxies for the first time. The Aspera mission is designed to target the O VI emission line doublet from highly ionized oxygen, located at 1032, 1038 Å rest frame. Aspera combines a simple spectroscopic optical design using advances in highly-reflective FUV-coated optics with advanced UV MCP detectors to optimize throughput and sensitivity. Aspera will build multiple days of exposure time on each target to ensure spectroscopic detection and mapping of O VI emission. The Aspera concept was recently selected for funding in the inaugural 2020 NASA Astrophysics Pioneers Program (\$20M) in January of 2021.

2:00 - 2:30pm **High Spectral Resolution Over a** Wide Field of View: The Hyperion FUV Spectrograph

> Author and Presenter: Dr. Erika Hamden, Hyperion Mission Principal investigator, Assistant

	Professor, Department of Astronomy, & Assistant Astronomer, Steward Observatory, University of Arizona
2:30 - 3:00pm	Company Pitches: Infrared Laboratories, Leibniz Institute for Astrophysics Potsdam, Salvo Technologies
3:00 - 3:30pm	Networking & Coffee Break hosted by Control Vision
3:30 - 4:00pm	Imaging Exoplanets and Searching for Life with the Giant Magellan Telescope
	Author and Presenter: Dr. Jared Males, Assistant Astronomer, Steward Observatory, University Arizona
4:00 - 4:30pm	The NEID Spectrometer: A Revolution in Radial Velocity Precision to Enable the Search for Earth-Twin Exoplanets
	Author and Presenter: Dr. Chad Bender, Associate Astronomer, Steward Observatory, University of Arizona
4:30 - 5:00pm	Company Pitches: TBA
Closing Session	
5:00 - 6:00pm	Closing Remarks by Robert Walker, Vice President, Sales and Marketing, Leonardo Electronics US

We gratefully acknowledge our 5th Arizona Photonics Days sponsors

